CS-200
Computer Architecture

Part le. Instruction Set Architecture
Arithmetic

Paolo lenne

<paolo.ienne@epfl.ch>

Notation

Number (represented on a specific no. of digits/bits)

A =40 = g(m)

Number (in binary or decimal)

A=A10=A2=A2f

C

N—

Individual digits (bits)

an_l, an_z, BEn az, al, aO

Digit string (representation) /

(Ap_1an_2...02a1a0)

Binary, 2’s complement

Binary

Simply 100010
if the digits are known

Numbers

We usually care for three types of numbers:

* Integers (signed and unsigned)

0,1,2,3,4294967295, —2147483648
 Fixed Point

0.12,3.14,1073741823.75

— Essentially integers with implicit 10 or 2% scaling

— Extremely important in practice (most signal-processing is fixed point)

* Floating Point
3.14E3, —2.5E1, 1.0E0, 4.2E—-2, —1.5E-3

Unsigned Integers

Weighted (positional)
Nonredundant

Fixed-radix (radix-10 or radix-2)
Canonical

Definition:

If R =2, binary
n—1 /

_ _ i
A=(a,_10,_5...0,0,10y) = 2 a;R
i=0

Signed Integers

* Sign-and-Magnitude
e 2’s Complement (particular choice of True-and-Complement)

* Biased
— Practically used only in Floating Point numbers (mentioned later)

Signh and Magnitude

Human friendly!
The first symbol is a sign (+/- for humans, 0/1 for computers)

The rest is an unsigned number:

+100, —2345 If we use 0/1 for the sign,
the number of bits matters

+111,=0111%” /
[—1112 = 111124)]
e If R =2, binary
Definition:
n—2

A= (san_y...a,a100) = (—1)° - 2 a;R'

_/ 1=0
Oor1l

Radix’s Complement

e Special form of True-and-Complement with C=R"

00000000 01111111 10000000 11111111
0 127 128 255

/ R=2

/ n=28
10000000 11111111 00000000 01111111
~128 -1 0 127]
* Property whenR =2:
n—2

— — n—1 L
A=(a,_1a,_»...0,0100) = —A,_12™" * + E a;?2
i=0

Radix’s Complement

* Not a human-friendly representation
* In decimal (10’s complement):
5,678\ = 05,678,0c = +5,678,,
9,999,999'7) =9,999,999,) — 107 = —1,,
8,766\1. = 8,766,0 — 10* = —1,234,,
* In binary (2’s complement):
0100,1101,0010:* = 100,1101,0010, = +1,234,,
1111,11118% = 255,, — 28 = —1,,
1011,0010,11105% = 2862,, — 212 = —1234,,

2’s Complement from Subtraction

* Consider a “normal” paper-and-pencil subtraction

2’s Complement from Subtraction

* Consider a “normal” paper-and-pencil subtraction

-1 -1 -1 -1
0 0 00 1 0 1 o, 10,
-0 0 0 1 0 0 0 1, 1716
stop and e w111 1 0 0 1,
thoon. N 2
1|1 1 1 1 0 0 1,
27 |+26 425 424 423 +20 -710

R—
A sign bit

Addition Is Unchanged from Unsigned

* Only two instructions (with the immediate version; subi is a pseudo)

Arithmetic

add rd,rsl,rs2 rd + rsl + rs2 R 0x00 0x0 0x33
addi rd,rsl,imm rd <— rsl + sext(imm) I 0x0 0x13
sub rd,rsl,rs2 rd < rsl —rs2 R 0x20 0x0 0x33

e Old architectures (MIPS, notably) had distinct add and addu but it was
essentially a misnomer; ignore it and do not be confused!

* Instead, addition of Sign-and-Magnitude numbers is a different problem
(see later) = this is why 2’s complement is the universal representation
of signed integers today

Sign Extension

* Unsigned numbers can be though as having infinite Os in front
1,0101, = 0000,0000,0001,0101,

* |nstead, 2’s complement numbers have infinite replicas of the MSB/sign
bit in front

1 1 0 12 4 bits
Truncation is
+22 +20 -310 legal only if you
/ remove copies of
the final sign bit
1 1 1 1 1 1 0 1, 8 bits

L 3[-27 +26 42> +24 +23] +22 +20 -310

Shift R2

srl rd,rsl,rs2 rd < rsif>.|rs2 R 0x00 0x5 0x33
srli rd,rsil,imm rd < rsi|>.,|imm 1 0x00 0xb 0x13
sra rd,rsl,rs?2 rd < rslf > frs2 R 0x20 0xb 0x33
srai rd,rsil,imm rd <« rslﬁimm 1 0x20 0xb 0x13
Compare

slt rd,rsl,rs?2 rd < rsl <, rs2 R 0x00 0x2 0x33
slti rd,rsl,imm rd < rsl <, sext(imm) I 0x2 0x13
sltu rd,rsil,rs2 rd < rsl <, rs2 R 0x00 0x3 0x33
sltiu rd,rsl,imm rd < rsl <, sext(imm) I 0x3 0x13
Branch

blt rsl,rs2,imm pc ¢ pc + sext(imm < 1), if rs1 <, rs2 B 0x4 0x63
bge rsl,rs2,imm pc < pc + sext(imm < 1), if rs1 >, rs2 B 0x5 0x63
bltu rsi,rs2,imm pc ¢ pc + sext(imm < 1), if rs1 <, rs2 B 0x6 0x63
bgeu rsl,rs2,imm pc < pc + sext(imm < 1), if rs1 >, rs2 B 0x7 0x63
Load

1b rd,imm(rs1) rd < sext(mem|rsl + sext(imm)][7 : 0]) I 0x0 0x03
lbu rd,imm(rsi) rd < zext(mem|rs1 + sext(imm)][7 : 0]) I 0x4 0x03
1h rd,imm(rs1) rd < sext(mem[rsl + sext(imm)][15 : 0]) I 0x1 0x03
lhu rd,imm(rsi) rd < zext(mem|rs1 + sext(imm)|[15 : 0]) I 0x5 0x03

\

Instructions for Sighed Numbers

Ve Insert zeroes (1 = logic = unsigned) or sign bits (a = arithmetic = signed)

1110,/2 = 0111,
but
1110,./2 = 1111,,

0000, < 1111,
but
0000,. > 1111,

Overflows in 2’s Complement Addition

e The sum is the same as with unsigned numbers:

a(n-1) b{n-1) a(n-2) b(n-2) a{n-3) b{n-3) a2 b2 al bl a0 bd
These bits are all LI_-I T LI_-I T LI_-I T LI_-I T LI_-I T LI_-I T B
identical to ‘ ‘ I ‘ ‘ ‘
; .. A B Cin A B Cin A B Cin A B Cin A B Cin A B Cin
unsigned addition...
FA FA FA ee e FA FA FA
Cout S Cout S Cout S Cout S Cout S Cout S
7y I I O I R R
O O O O O O
s{n-1) s{n-2) s{n-3) 52 51 s0

...but how to assess overflows?

Overflows in Hardware

* In hardware, carry out is the only missing bit from the complete result

* We can think of overflows as a truncation problem:

a(n-1) b{n-1) a(n-2) b(n-2) a{n-3) b{n-3)

[

[

[

a? b2 al bi a0 bD
T T b T T b T T
A B Cin A B Cin A B Cin
FA FA FA
Cout 5 Cout 5 Cout 5
52 s1 s0

-~ For unsigned numbers, the carry bit must be zero

A Bocnl|la 8onl|la & cin
FA FA FA
Cout 5 Cout 5 Cout 5
sn) i s(n-1) s(n-2) s(n-3)
No 1 €T
Ok 1
No 1

1
0 } <€— |n 2’s complement, the carry bit must be equal to the next bit

Overflow in Software

Ill

 Some architectures (e.g., x86) give us the carry bit in a special “register” (a flag)
- overflow detection is the same as in hardware
 Other (modern) architectures give us only the result of the addition (e.g., RISC-V)

* Detection usually based on the following observations:
— If addition of opposite sigh numbers, magnitude can only reduce = no overflow possible
— |If addition of same sign numbers, overflow possible but the sign of the result will appear wrong

0110=6
—
0111 =7
—
(0)1101 =13 :
1101 =-3

-8 —_ -1 0 78 _~— 15

Detect Addition Overflow in Software

* Add two 32-bit sighed integers and detect overflow
— At call time, a0 and al contain the two integers

— On return, a0 contains the result and a1l must be nonzero in case of
overflow

Detect Addition Overflow in Software

add_with_overflow:

add to, ao, al # Perform addition of a@ + al, store result in to
xor tl, a0, al # t1<0 if the operands have different signs

not ti1, til # t1<0 if the operands have the same sign

xor t2, tO, al # t2<0 if the result has different sign from operand
and t1, t1, t2 # t1<0 if the same signh ops and different sign result
srli al, ti1, 31 # move "sign" to LSB of al

mv ad, to
ret # Return sum in a@, overflow flag in al

Detect Addition Overflow in Software (Better)

add_with_overflow:
add to, ao, al # Perform addition of a@ + al, store result in to

slti t1, al, ©
slt t2, to, ao
xor al, t1, t2

tl = 1 if one operand is negative

t2 = 1 if the result is smaller than the other operand
overflow if and only if

- one op negative and result larger than other op

H HF H H H

- one op zero/positive and result smaller than other op

mv ad, to
ret # Return sum in a@, overflow flag in al

A+A=-1

* A “strange” but very useful property

[A+/T:—1] or —A=A+1

* Not too hard to prove

n-—2 n—2
—ap_ 12" + Z a;2' |+ | —ap_2™ 1 + Z a;2! | =

=0

n-2 n—2
= —(ap_1+ A1) 2"+ > (a;+a) -2t =-2"14+) 2t=—1
2, 2,
e Also somehow intuitive
A/*O 1 001 100 + 1
__»10110011-= ,
A 11111111 € _/

Two’s Complement Subtractor

* Using this property, A — B =A+ (—B) = A + B+1

A
'd \
ain-1) b{n-1) ain-2) b{n-2) a(n-3) b{n-3) a2 b2 al bi a0 b0
O O O O O O
A B Cin A B Cin A B Cin A B Cin A B Cin A B Cin
FA FA FA eee FA FA FA

Cout 5 Cout 5 Cout 5 Cout 5 Cout 5 Cout 5

Two’s Complement Add/Subtract Units

ain-1) b{n-1) a(n-2) b{n-2) a(n-3) b{n-3) b a0 b0 subtract

1 1 1 1 1

L

| N N]
1 0 1 0 1 0 1 0
A(n-1] B(n-1] A(n-2) B(n-2) A(n-3] B[n-3) Az B2 Al Bl A0 BO
0“;'::"" Cout ADDER (Ripple—Carry, CSA, CLA,...) Gin
S(n-1) S(n-2) S(n-3) 52 51

L b

overilow s(n-1) s(n-2) s(n-3) s2 =1

&0— 2

Fun Stuff: Bounds Check

* Check for a signed number t0 (e.g., an array index) to be within the
bounds 0..N-1 where Nis t1

bgeu t0, tl1l, out of bound
\
——

* Two checks with a single branch! Unsigned!
— If t6 20, bgeu is like bge and the right behaviour is evident

— If t0 <0, as an unsigned t0 looks like larger than any signed positive

to N=tl tIG
—#

\ j

Floating Point

Engineering
* Corresponds to our everyday habits / notation
Normalized

.18 pm -> 18 -10%m 4 1.8-107 m scientific

notation
75 km -> 75-103 m -> 7.5-10*m
35 mm > 35-103m > 3.5-102m
2.5m > 2.5-10°m > 2.5-10°m

* Asignificand (or mantissa) and an exponent of the base, for instance

2’s complement exponent

n—1 P AL
§ =g 2Ty 2 o 0]
X = (San_l...azalaoem_l...eleo> — (_1)5 . aiZL -2 em-1 Z]—0 €j
=0
“ J
Y

Sign-and-Magnitude significand

Floating Point

Large dynamic range but variable accuracy
Redundant unless normalized
Not real numbers: not associative!

Often exponent in biased signed representation
— Zero can be represented by 0000...0000
— Easier for comparisons and hardware implementations

Often normalized mantissa 1 < m < 2 with hidden bit (1. xxXxxXx)
Today the IEEE 754 standard is almost universally adopted
x86/x64 supports FP through SSE/AVX extensions (since 1999)
RISC-V supports FP through ISA extensions (not used in CS-200)

Example
Sign-and-Magnitude Addition

Write a function in RISC-V assembler to sum two 32-bit sighed numbers represented

in sign-and-magnitude (S&M) format and produce the result also in sign-and-
magnitude format

The two operands are in registers a@ and al on entry and the result should be placed
in register a@

lgnore overflows

L..or think about them
as an additional

exercise

Example
Solution: First Algorithm

* Do like humans do: look at the signs, perform an addition or subtraction as required,
and decide the final sign

e Basic algorithm

/— If the operands have the same sign \
* Add the absolute values
e Attach to the result the same sign as the operands

— If the operands have different sign
 Identify the largest value in absolute value

e Subtract the smallest absolute value from the largest one
\ » Attach to the result the sign of the largest value /

 This method is left as an additional exercise

Example
Solution: Second Algorithm

* Exploit what we have: implement conversions between the two representations
e Basic algorithm

(-)

— Convert the two operands from sign-and-magnitude to 2’s complement
— Add the two operands
— Convert the result from 2’s complement to sign-and-magnitude

G J

Example
Solution: Converting S&M to 2’s Comp

* Algorithm
— If the value is positive, no conversion is needed

— If the value is negative, one should
* Find the S&M opposite (positive and therefore correctly represented also in 2’s comp)
* Find the 2’s comp opposite (negative, as required)

Example
Solution: Checking S&M Signs

* The S&M sign can be checked in many ways

— Testing bit 31 by right shift

srli to, a0, 31 # srai would be fine too
beqz to0, positive

— Testing bit 31 by masking

lui tl, Ox80000
and to, a0, t1
beqz t0, positive

— Comparing to zero (in principle this logkq wrong, because bgez expects a 2’s comp number, but...)

bgez to, positive

We should check that we are
treating “minus 0” correctly

Example
Solution: Finding the S&M Opposite

* Once we know that the S&M number is negative, the sign can be changed in a few of ways

— Inverting bit 31 with a mask (a real sign change)

lui tl, Ox80000
xor ad, ao, tl

— Clearing bit 31 with a mask (forcing a number to be positive)

lui t1l, Ox80000
not t1l, t1
and ao, ao, ti1

— Removing bit 31 by two shifts (forcing a number to be positive)

slli ad, a0, 1
srli aod, ao, 1 # srai would be wrong!

Example
Solution: Finding the 2’s Comp Opposite

* Once we have the absolute value, we can find the opposite in 2’s comp in three ways

— Subtracting from zero (which is ok, because 20 being positive, one can think of it as being in 2’s comp)
neg ao, ao # same as sub a@, zero, ao
— Using the relation — A=A+ 1

not ad, a0
addi ad, ao, 1

— Using the relation —A =4 -1

addi a0, ao, -1
not ad, a0

Example
Solution: Converting 2’s Comp to S&M

* Algorithm
— If the value is positive, no conversion is needed
— If the value is negative, one should:

* Find the 2’s comp opposite (which is positive and therefore correctly represented also in S&M)
* Find the S&M opposite

* Most steps are similar to those before
— Checking the sign of a 2’s comp is the same as an S&M
— Finding the 2’s comp opposite is exactly as before

Example
Solution: Finding the S&M Opposite

* |f we know that a S&M number is positive, the sign can be changed in a few of ways

— Inverting bit 31 with a mask (a real sign change)

lui tl, Ox80000
xor ad, ao, tl

— Setting bit 31 with a mask (forcing a number to be positive)

lui tl, Ox80000
or ad, ao, tl

Example
Solution: Complete Program

add_sandm:
lui tl, Ox80000 # a mask for the sign bit
and to, a0, til
beqz to, a@_positive
xor ao, ao, ti
neg ad, ao
a0_positive: # now a@ is in 2’s complement
and to, al, t1
beqz t0, al_positive
xor al, al, ti
neg al, al
al_positive: # now al too is in 2’s complement
add a0, ao, al # perform the addition in 2’s complement
and to, a0, til
beqz t0, sum_positive
neg al, al
xor ao, a0, ti
sum_positive: # now a@ is in sign-and-magnitude

ret

References

e Patterson & Hennessy, COD — RISC-V Edition

— Chapter 2 and, in particular, Section 2.4
— Chapter 3 and, in particular, Section 3.2

	CS-200�Computer Architecture�—�Part 1e. Instruction Set Architecture�Arithmetic
	Notation
	Numbers
	Unsigned Integers
	Signed Integers
	Sign and Magnitude
	Radix’s Complement
	Radix’s Complement
	2’s Complement from Subtraction
	2’s Complement from Subtraction
	Addition Is Unchanged from Unsigned
	Sign Extension
	Instructions for Signed Numbers
	Overflows in 2’s Complement Addition
	Overflows in Hardware
	Overflow in Software
	Detect Addition Overflow in Software
	Slide Number 18
	Detect Addition Overflow in Software
	Detect Addition Overflow in Software (Better)
	A + A = −1
	Two’s Complement Subtractor
	Two’s Complement Add/Subtract Units
	Fun Stuff: Bounds Check
	Floating Point
	Floating Point
	Example�Sign-and-Magnitude Addition
	Slide Number 28
	Example�Solution: First Algorithm
	Example�Solution: Second Algorithm
	Example�Solution: Converting S&M to 2’s Comp
	Example�Solution: Checking S&M Signs
	Example�Solution: Finding the S&M Opposite
	Example�Solution: Finding the 2’s Comp Opposite
	Example�Solution: Converting 2’s Comp to S&M
	Example�Solution: Finding the S&M Opposite
	Example�Solution: Complete Program
	References

