
1

CS-200
Computer Architecture

—
Part 1e. Instruction Set Architecture

Arithmetic

Paolo Ienne
<paolo.ienne@epfl.ch>

2

Notation

• Number (represented on a specific no. of digits/bits)

• Number (in binary or decimal)

• Individual digits (bits)

• Digit string (representation)

𝐴𝐴 = 𝐴𝐴10 = 𝐴𝐴2 = 𝐴𝐴2𝑐𝑐

𝑎𝑎𝑛𝑛−1, 𝑎𝑎𝑛𝑛−2, … 𝑎𝑎2, 𝑎𝑎1, 𝑎𝑎0

𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛−2. . . 𝑎𝑎2𝑎𝑎1𝑎𝑎0

𝐴𝐴 = 𝐴𝐴(𝑛𝑛) = 𝐴𝐴(𝑚𝑚)

Simply 100010
if the digits are known

Binary

Binary, 2’s complement

3

Numbers

We usually care for three types of numbers:

• Integers (signed and unsigned)
0, 1, 2, 3, 4294967295, −2147483648

• Fixed Point
0.12, 3.14, 1073741823.75

– Essentially integers with implicit 10k or 2k scaling
– Extremely important in practice (most signal-processing is fixed point)

• Floating Point
3.14E3, −2.5E1, 1.0E0, 4.2E−2, −1.5E−3

4

Unsigned Integers

• Weighted (positional)
• Nonredundant
• Fixed-radix (radix-10 or radix-2)
• Canonical

• Definition:

𝐴𝐴 = 𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛−2. . . 𝑎𝑎2𝑎𝑎1𝑎𝑎0 = �
𝑖𝑖=0

𝑛𝑛−1

𝑎𝑎𝑖𝑖𝑅𝑅𝑖𝑖

If R = 2, binary

5

Signed Integers

• Sign-and-Magnitude

• 2’s Complement (particular choice of True-and-Complement)

• Biased
– Practically used only in Floating Point numbers (mentioned later)

6

Sign and Magnitude

• Human friendly!
• The first symbol is a sign (+/− for humans, 0/1 for computers)
• The rest is an unsigned number:

+100, −2345

+1112 = 01112
(4)

−1112 = 11112
(4)

• Definition:

𝐴𝐴 = 𝑠𝑠𝑎𝑎𝑛𝑛−2. . . 𝑎𝑎2𝑎𝑎1𝑎𝑎0 = (−1)𝑠𝑠 ⋅ �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖𝑅𝑅𝑖𝑖

If R = 2, binary

0 or 1

If we use 0/1 for the sign,
the number of bits matters

7

Radix’s Complement

• Special form of True-and-Complement with C = Rn

• Property when R = 2:

00000000 01111111 11111111

0 127 255

10000000

128

0111111110000000

127−128

11111111

−1

00000000

0

R = 2
n = 8

𝐴𝐴 = 𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛−2. . . 𝑎𝑎2𝑎𝑎1𝑎𝑎0 = −𝑎𝑎𝑛𝑛−12𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖2𝑖𝑖

8

Radix’s Complement

• Not a human-friendly representation

• In decimal (10’s complement):

5,67810𝑐𝑐
(5) = 05,67810𝑐𝑐 = +5,67810

9,999,99910𝑐𝑐
(7) = 9,999,99910 − 107 = −110

8,76610𝑐𝑐
(4) = 8,76610 − 104 = −1,23410

• In binary (2’s complement):

0100,1101,00102𝑐𝑐
(12) = 100,1101,00102 = +1,23410

1111,11112𝑐𝑐
(8) = 25510 − 28 = −110

1011,0010,11102𝑐𝑐
(12) = 286210 − 212 = −123410

9

2’s Complement from Subtraction

• Consider a “normal” paper-and-pencil subtraction

0 0 0 0 1 0 1 02 1010

− 0 0 0 1 0 0 0 12 1710

1
0A sign bit

Stop and
“accept”
the −1…

2’s Complement from Subtraction

• Consider a “normal” paper-and-pencil subtraction

−1 −1 −1 −1

0 0 0 0 1 0 1 02 1010

− 0 0 0 1 0 0 0 12 1710

… … 1 1 1 1 0 0 12

↓
–1 1 1 1 1 0 0 12

−27 +26 +25 +24 +23 +20 −710

1
1

Addition Is Unchanged from Unsigned

• Only two instructions (with the immediate version; subi is a pseudo)

• Old architectures (MIPS, notably) had distinct add and addu but it was
essentially a misnomer; ignore it and do not be confused!

• Instead, addition of Sign-and-Magnitude numbers is a different problem
(see later)  this is why 2’s complement is the universal representation
of signed integers today

1
2

Sign Extension

• Unsigned numbers can be though as having infinite 0s in front
−110 = −000110

1,01012 = 0000,0000,0001,01012
• Instead, 2’s complement numbers have infinite replicas of the MSB/sign

bit in front
1 1 0 12 4 bits

-23 +22 +20 -310

1 1 1 1 1 1 0 12 8 bits

-27 +26 +25 +24 +23 +22 +20 -310

=

Truncation is
legal only if you

remove copies of
the final sign bit

1
3

Instructions for Signed Numbers

00002 < 11112
but

00002𝑐𝑐 > 11112𝑐𝑐

⁄11102 2 = 01112
but

⁄11102𝑐𝑐 2 = 11112𝑐𝑐

Insert zeroes (l = logic  unsigned) or sign bits (a = arithmetic  signed)

1
4

Overflows in 2’s Complement Addition

• The sum is the same as with unsigned numbers:

…but how to assess overflows?

These bits are all
identical to

unsigned addition…

1
5

Overflows in Hardware

• In hardware, carry out is the only missing bit from the complete result
• We can think of overflows as a truncation problem:

1

1
1

…

1
0 In 2’s complement, the carry bit must be equal to the next bit

For unsigned numbers, the carry bit must be zeroNo

Ok
No

1
6

Overflow in Software

• Some architectures (e.g., x86) give us the carry bit in a special “register” (a flag)
 overflow detection is the same as in hardware

• Other (modern) architectures give us only the result of the addition (e.g., RISC-V)
• Detection usually based on the following observations:

– If addition of opposite sign numbers, magnitude can only reduce  no overflow possible
– If addition of same sign numbers, overflow possible but the sign of the result will appear wrong

0110 = 6
0111 = 7

(0)1101 = 13
1101 = −3

0 7 8 15−8 −1

1
7

Detect Addition Overflow in Software

• Add two 32-bit signed integers and detect overflow
– At call time, a0 and a1 contain the two integers
– On return, a0 contains the result and a1 must be nonzero in case of

overflow

1
8

1
9

Detect Addition Overflow in Software
add_with_overflow:

add t0, a0, a1 # Perform addition of a0 + a1, store result in t0

xor t1, a0, a1 # t1<0 if the operands have different signs
not t1, t1 # t1<0 if the operands have the same sign
xor t2, t0, a1 # t2<0 if the result has different sign from operand
and t1, t1, t2 # t1<0 if the same sign ops and different sign result
srli a1, t1, 31 # move "sign" to LSB of a1

mv a0, t0
ret # Return sum in a0, overflow flag in a1

2
0

Detect Addition Overflow in Software (Better)
add_with_overflow:

add t0, a0, a1 # Perform addition of a0 + a1, store result in t0

slti t1, a1, 0 # t1 = 1 if one operand is negative
slt t2, t0, a0 # t2 = 1 if the result is smaller than the other operand
xor a1, t1, t2 # overflow if and only if

- one op negative and result larger than other op
- one op zero/positive and result smaller than other op

mv a0, t0
ret # Return sum in a0, overflow flag in a1

2
1

A + A = −1

• A “strange” but very useful property

• Not too hard to prove

• Also somehow intuitive

−𝑎𝑎𝑛𝑛−12𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖2𝑖𝑖 + −𝑎𝑎𝑛𝑛−12𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖2𝑖𝑖 =

= − 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛−1 ⋅ 2𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖 + 𝑎𝑎𝑖𝑖 ⋅ 2𝑖𝑖 = −2𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

2𝑖𝑖 = −1

0 1 0 0 1 1 0 0 +
1 0 1 1 0 0 1 1 =
1 1 1 1 1 1 1 1

𝐴𝐴 + 𝐴̅𝐴 = −1 or −𝐴𝐴 = 𝐴̅𝐴 + 1

A
𝐴̅𝐴

−1

2
2

Two’s Complement Subtractor

• Using this property, 𝐴𝐴 − 𝐵𝐵 = 𝐴𝐴 + (−𝐵𝐵) = 𝐴𝐴 + 𝐵𝐵 + 1

2
3

Two’s Complement Add/Subtract Units

2
4

Fun Stuff: Bounds Check

• Check for a signed number t0 (e.g., an array index) to be within the
bounds 0..N−1 where N is t1

bgeu t0, t1, out_of_bound

• Two checks with a single branch!
– If t0 ≥ 0, bgeu is like bge and the right behaviour is evident
– If t0 < 0, as an unsigned t0 looks like larger than any signed positive

Unsigned!

t0 t0N = t1

2
5

Floating Point

• Corresponds to our everyday habits

• A significand (or mantissa) and an exponent of the base, for instance

.18 µm  .18 · 10-6 m  1.8 · 10-7 m

75 km  75 · 103 m  7.5 · 104 m

35 mm  35 · 10-3 m  3.5 · 10-2 m

2.5 m  2.5 · 100 m  2.5 · 100 m

Engineering
notation

Normalized
scientific
notation

𝑋𝑋 = 𝑠𝑠𝑎𝑎𝑛𝑛−1. . . 𝑎𝑎2𝑎𝑎1𝑎𝑎0𝑒𝑒𝑚𝑚−1. . . 𝑒𝑒1𝑒𝑒0 = (−1)𝑠𝑠 ⋅ �
𝑖𝑖=0

𝑛𝑛−1

𝑎𝑎𝑖𝑖2𝑖𝑖 ⋅ 2−𝑒𝑒𝑚𝑚−12𝑚𝑚−1+∑𝑗𝑗=0
𝑚𝑚−2 𝑒𝑒𝑗𝑗2𝑗𝑗

Sign-and-Magnitude significand

2’s complement exponent

2
6

Floating Point

• Large dynamic range but variable accuracy
• Redundant unless normalized
• Not real numbers: not associative!
• Often exponent in biased signed representation

– Zero can be represented by 0000…0000
– Easier for comparisons and hardware implementations

• Often normalized mantissa 1 ≤ 𝑚𝑚 < 2 with hidden bit (1.xxxxx)
• Today the IEEE 754 standard is almost universally adopted
• x86/x64 supports FP through SSE/AVX extensions (since 1999)
• RISC-V supports FP through ISA extensions (not used in CS-200)

2
7

Example
Sign-and-Magnitude Addition

• Write a function in RISC-V assembler to sum two 32-bit signed numbers represented
in sign-and-magnitude (S&M) format and produce the result also in sign-and-
magnitude format

• The two operands are in registers a0 and a1 on entry and the result should be placed
in register a0

• Ignore overflows

…or think about them
as an additional

exercise

2
8

2
9

Example
Solution: First Algorithm

• Do like humans do: look at the signs, perform an addition or subtraction as required,
and decide the final sign

• Basic algorithm

– If the operands have the same sign
• Add the absolute values
• Attach to the result the same sign as the operands

– If the operands have different sign
• Identify the largest value in absolute value
• Subtract the smallest absolute value from the largest one
• Attach to the result the sign of the largest value

• This method is left as an additional exercise

3
0

Example
Solution: Second Algorithm

• Exploit what we have: implement conversions between the two representations
• Basic algorithm

– Convert the two operands from sign-and-magnitude to 2’s complement
– Add the two operands
– Convert the result from 2’s complement to sign-and-magnitude

3
1

Example
Solution: Converting S&M to 2’s Comp

• Algorithm
– If the value is positive, no conversion is needed
– If the value is negative, one should

• Find the S&M opposite (positive and therefore correctly represented also in 2’s comp)
• Find the 2’s comp opposite (negative, as required)

3
2

Example
Solution: Checking S&M Signs

• The S&M sign can be checked in many ways

– Testing bit 31 by right shift

srli t0, a0, 31 # srai would be fine too
beqz t0, positive

– Testing bit 31 by masking

lui t1, 0x80000
and t0, a0, t1
beqz t0, positive

– Comparing to zero (in principle this looks wrong, because bgez expects a 2’s comp number, but…)

bgez t0, positive

We should check that we are
treating “minus 0” correctly

3
3

Example
Solution: Finding the S&M Opposite

• Once we know that the S&M number is negative, the sign can be changed in a few of ways

– Inverting bit 31 with a mask (a real sign change)

lui t1, 0x80000
xor a0, a0, t1

– Clearing bit 31 with a mask (forcing a number to be positive)

lui t1, 0x80000
not t1, t1
and a0, a0, t1

– Removing bit 31 by two shifts (forcing a number to be positive)

slli a0, a0, 1
srli a0, a0, 1 # srai would be wrong!

3
4

Example
Solution: Finding the 2’s Comp Opposite

• Once we have the absolute value, we can find the opposite in 2’s comp in three ways

– Subtracting from zero (which is ok, because a0 being positive, one can think of it as being in 2’s comp)

neg a0, a0 # same as sub a0, zero, a0

– Using the relation −𝐴𝐴 = 𝐴̅𝐴 + 1

not a0, a0
addi a0, a0, 1

– Using the relation −𝐴𝐴 = 𝐴𝐴 − 1

addi a0, a0, -1
not a0, a0

3
5

Example
Solution: Converting 2’s Comp to S&M

• Algorithm
– If the value is positive, no conversion is needed
– If the value is negative, one should:

• Find the 2’s comp opposite (which is positive and therefore correctly represented also in S&M)
• Find the S&M opposite

• Most steps are similar to those before
– Checking the sign of a 2’s comp is the same as an S&M
– Finding the 2’s comp opposite is exactly as before

3
6

Example
Solution: Finding the S&M Opposite

• If we know that a S&M number is positive, the sign can be changed in a few of ways

– Inverting bit 31 with a mask (a real sign change)

lui t1, 0x80000
xor a0, a0, t1

– Setting bit 31 with a mask (forcing a number to be positive)

lui t1, 0x80000
or a0, a0, t1

3
7

Example
Solution: Complete Program

add_sandm:
lui t1, 0x80000 # a mask for the sign bit
and t0, a0, t1
beqz t0, a0_positive
xor a0, a0, t1
neg a0, a0

a0_positive: # now a0 is in 2’s complement
and t0, a1, t1
beqz t0, a1_positive
xor a1, a1, t1
neg a1, a1

a1_positive: # now a1 too is in 2’s complement
add a0, a0, a1 # perform the addition in 2’s complement
and t0, a0, t1
beqz t0, sum_positive
neg a1, a1
xor a0, a0, t1

sum_positive: # now a0 is in sign-and-magnitude
ret

3
8

References

• Patterson & Hennessy, COD – RISC-V Edition
– Chapter 2 and, in particular, Section 2.4
– Chapter 3 and, in particular, Section 3.2

	CS-200�Computer Architecture�—�Part 1e. Instruction Set Architecture�Arithmetic
	Notation
	Numbers
	Unsigned Integers
	Signed Integers
	Sign and Magnitude
	Radix’s Complement
	Radix’s Complement
	2’s Complement from Subtraction
	2’s Complement from Subtraction
	Addition Is Unchanged from Unsigned
	Sign Extension
	Instructions for Signed Numbers
	Overflows in 2’s Complement Addition
	Overflows in Hardware
	Overflow in Software
	Detect Addition Overflow in Software
	Slide Number 18
	Detect Addition Overflow in Software
	Detect Addition Overflow in Software (Better)
	A + A = −1
	Two’s Complement Subtractor
	Two’s Complement Add/Subtract Units
	Fun Stuff: Bounds Check
	Floating Point
	Floating Point
	Example�Sign-and-Magnitude Addition
	Slide Number 28
	Example�Solution: First Algorithm
	Example�Solution: Second Algorithm
	Example�Solution: Converting S&M to 2’s Comp
	Example�Solution: Checking S&M Signs
	Example�Solution: Finding the S&M Opposite
	Example�Solution: Finding the 2’s Comp Opposite
	Example�Solution: Converting 2’s Comp to S&M
	Example�Solution: Finding the S&M Opposite
	Example�Solution: Complete Program
	References

