CS-200 Computer Architecture

Part 1e. Instruction Set Architecture
Arithmetic

Paolo lenne <paolo.ienne@epfl.ch>

Notation

Number (represented on a specific no. of digits/bits)

$$A = A^{(n)} = A^{(m)}$$

Number (in binary or decimal)

$$A = A_{10} = A_2 = A_{2c}$$

Individual digits (bits)

$$a_{n-1}$$
, a_{n-2} , ... a_2 , a_1 , a_0

Digit string (representation)

$$\langle a_{n-1}a_{n-2}...a_2a_1a_0\rangle$$

Binary, 2's complement

Simply 100010 if the digits are known

Binary

Numbers

We usually care for three types of numbers:

Integers (signed and unsigned)

$$0, 1, 2, 3, 4294967295, -2147483648$$

Fixed Point

- Essentially integers with implicit 10^k or 2^k scaling
- Extremely important in practice (most signal-processing is fixed point)
- Floating Point

$$3.14E3$$
, $-2.5E1$, $1.0E0$, $4.2E-2$, $-1.5E-3$

Unsigned Integers

- Weighted (positional)
- Nonredundant
- Fixed-radix (radix-10 or radix-2)
- Canonical

Definition:

$$A = \langle a_{n-1}a_{n-2}\dots a_2a_1a_0\rangle = \sum_{i=0}^{n-1}a_iR^i$$
 If $R = 2$, binary

Signed Integers

Sign-and-Magnitude

2's Complement (particular choice of True-and-Complement)

Biased

Practically used only in Floating Point numbers (mentioned later)

Sign and Magnitude

- Human friendly!
- The first symbol is a sign (+/- for humans, 0/1 for computers)
- The rest is an unsigned number:

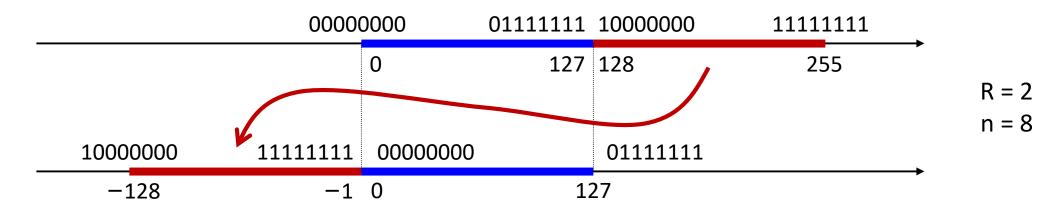
+100, -2345 If we use 0/1 for the sign, the number of bits matters $-111_2 = 1111_2^{(4)}$ If R = 2, binary

Definition:

$$A = \langle sa_{n-2} \dots a_2 a_1 a_0 \rangle = (-1)^s \cdot \sum_{i=0}^{n-2} a_i R^i$$

Radix's Complement

Special form of True-and-Complement with C = Rⁿ



Property when R = 2:

$$A = \langle a_{n-1} a_{n-2} \dots a_2 a_1 a_0 \rangle = -a_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

Radix's Complement

- Not a human-friendly representation
- In **decimal** (10's complement):

$$5,678_{10c}^{(5)} = 05,678_{10c} = +5,678_{10}$$

$$9,999,999_{10c}^{(7)} = 9,999,999_{10} - 10^7 = -1_{10}$$

$$8,766_{10c}^{(4)} = 8,766_{10} - 10^4 = -1,234_{10}$$

• In **binary** (2's complement):

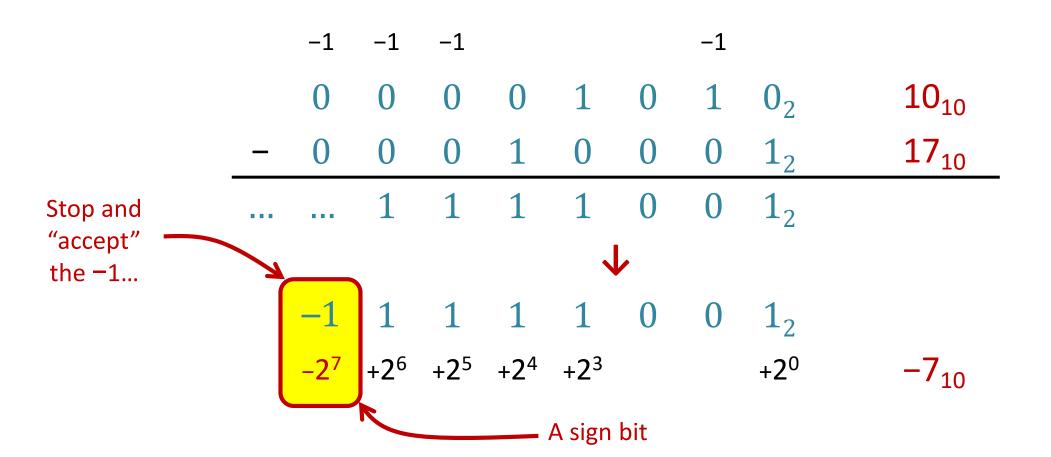
$$0100,1101,0010_{2c}^{(12)} = 100,1101,0010_{2} = +1,234_{10}$$
$$1111,1111_{2c}^{(8)} = 255_{10} - 2^{8} = -1_{10}$$
$$1011,0010,1110_{2c}^{(12)} = 2862_{10} - 2^{12} = -1234_{10}$$

2's Complement from Subtraction

Consider a "normal" paper-and-pencil subtraction

2's Complement from Subtraction

Consider a "normal" paper-and-pencil subtraction



Addition Is Unchanged from Unsigned

Only two instructions (with the immediate version; subi is a pseudo)

Arithmetic							
add	rd,rs1,rs2	$\mathtt{rd} \leftarrow \mathtt{rs1} + \mathtt{rs2}$	R	0x00	0x0	0x33	
addi	rd,rs1,imm	$\mathtt{rd} \leftarrow \mathtt{rs1} + \mathrm{sext}(\mathtt{imm})$	I		0x0	0x13	
sub	rd,rs1,rs2	$\mathtt{rd} \leftarrow \mathtt{rs1} - \mathtt{rs2}$	R	0x20	0x0	0x33	

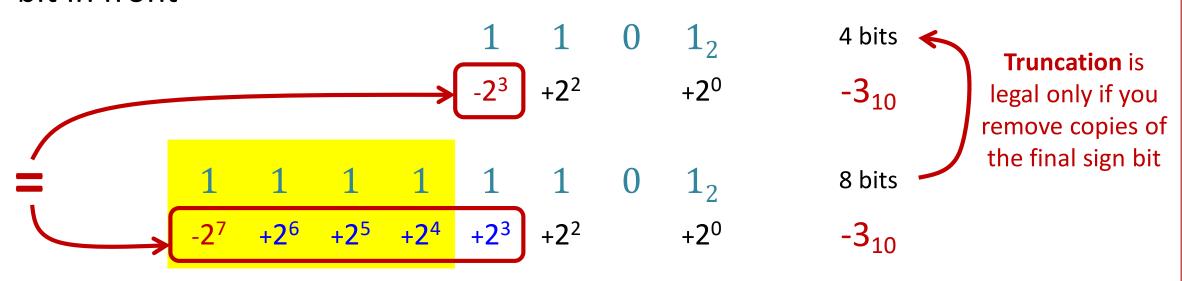
- Old architectures (MIPS, notably) had distinct add and addu but it was essentially a misnomer; **ignore** it and do not be confused!
- Instead, addition of Sign-and-Magnitude numbers is a different problem (see later) → this is why 2's complement is the universal representation of signed integers today

Sign Extension

Unsigned numbers can be though as having infinite 0s in front

$$-1_{10} = -0001_{10}$$
$$1,0101_2 = 00000,00000,0001,0101_2$$

 Instead, 2's complement numbers have infinite replicas of the MSB/sign bit in front

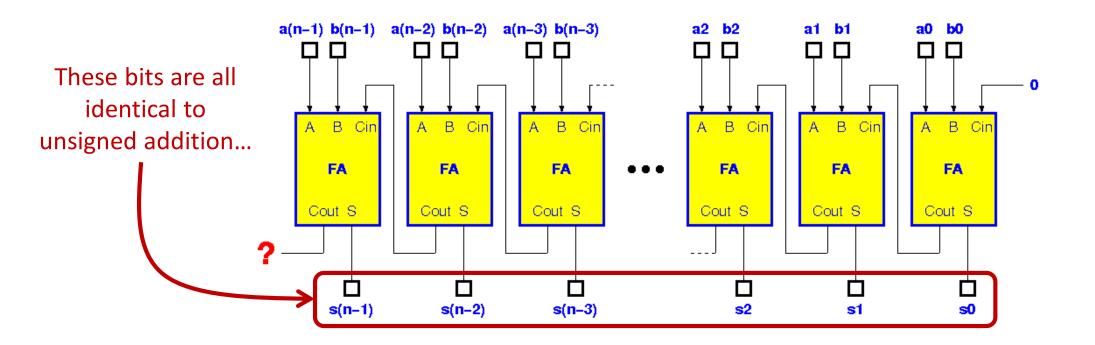


Instructions for Signed Numbers

		Insert zeroes (1 = logi	$c \rightarrow un$	signed) o	r sign bit	s (a = arit	hmetic → signed)
Shift		▼					`
srl	rd,rs1,rs2	$ ext{rd} \leftarrow ext{rs1} \gg_u ext{rs2}$	\mathbf{R}	0x00	0x5	0x33	$1110_2/2 = 0111_2$
srli	rd,rs1,imm	$\mathtt{rd} \leftarrow \mathtt{rs1} \gg_u \mathtt{imm}$	I	0x00	0x5	0x13	but
sra	rd,rs1,rs2	$ exttt{rd} \leftarrow exttt{rs1} \gg_s exttt{rs2}$	R	0x20	0x5	0x33	$1110_{2c}/2 = 1111_{2c}$
srai	rd,rs1,imm	$ exttt{rd} \leftarrow exttt{rs1} \gg_s$ imm	I	0x20	0x5	0x13	$\int 1110_{2c}/2 - 1111_{2c}$
Com	pare)
slt	rd,rs1,rs2	$\mathtt{rd} \leftarrow \mathtt{rs1} <_s \mathtt{rs2}$	\mathbf{R}	0x00	0x2	0x33	
slti	rd,rs1,imm	$\mathtt{rd} \leftarrow \mathtt{rs1} <_s \mathtt{sext}(\mathtt{imm})$	I		0x2	0x13	
sltu	rd,rs1,rs2	$\mathtt{rd} \leftarrow \mathtt{rs1} <_{u} \mathtt{rs2}$	R	0x00	0x3	0x33	$0000_2 < 1111_2$
sltiu	rd,rs1,imm	$\mathtt{rd} \leftarrow \mathtt{rs1} <_u \mathtt{sext}(\mathtt{imm})$	I		0x3	0x13	but
Bran	ch						(
blt	rs1,rs2,imm	$\mathtt{pc} \leftarrow \mathtt{pc} + \mathrm{sext}(\mathtt{imm} \ll 1), \ \mathrm{if} \ \mathtt{rs1} <_s \mathtt{rs2}$	В		0x4	0x63	$0000_{2c} > 1111_{2c}$
bge	rs1,rs2,imm	$\mathtt{pc} \leftarrow \mathtt{pc} + \mathrm{sext}(\mathtt{imm} \ll 1), \ \mathrm{if} \ \mathtt{rs1} \geq_s \mathtt{rs2}$	В		0x5	0x63	
bltu	rs1,rs2,imm	$\mathtt{pc} \leftarrow \mathtt{pc} + \mathrm{sext}(\mathtt{imm} \ll 1), \ \mathrm{if} \ \mathtt{rs1} <_u \ \mathtt{rs2}$	В		0x6	0x63	
bgeu	rs1,rs2,imm	$\mathtt{pc} \leftarrow \mathtt{pc} + \mathtt{sext}(\mathtt{imm} \ll 1), \ \mathrm{if} \ \mathtt{rs1} \geq_u \mathtt{rs2}$	В		0x7	0x63	J
Load							•
lb	rd,imm(rs1)	$\mathtt{rd} \leftarrow \mathrm{sext}(\mathrm{mem}[\mathtt{rs1} + \mathrm{sext}(\mathtt{imm})][7:0])$	I		0x0	0x03	
lbu	rd,imm(rs1)	$\mathtt{rd} \leftarrow \mathrm{zext}(\mathrm{mem}[\mathtt{rs1} + \mathrm{sext}(\mathtt{imm})][7:0])$	Ι		0x4	0x03	
lh	rd,imm(rs1)	$\mathtt{rd} \leftarrow \mathrm{sext}(\mathrm{mem}[\mathtt{rs1} + \mathrm{sext}(\mathtt{imm})][15:0])$	I		0x1	0x03	
lhu	rd,imm(rs1)	$\mathtt{rd} \leftarrow \mathrm{zext}(\mathrm{mem}[\mathtt{rs1} + \mathrm{sext}(\mathtt{imm})][15:0])$	Ι		0x5	0x03	

Overflows in 2's Complement Addition

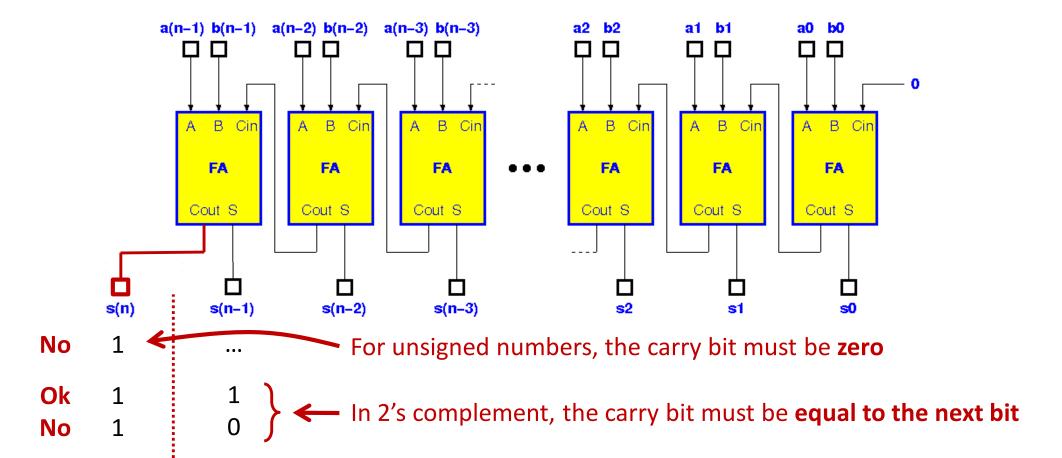
The sum is the same as with unsigned numbers:



...but how to assess **overflows**?

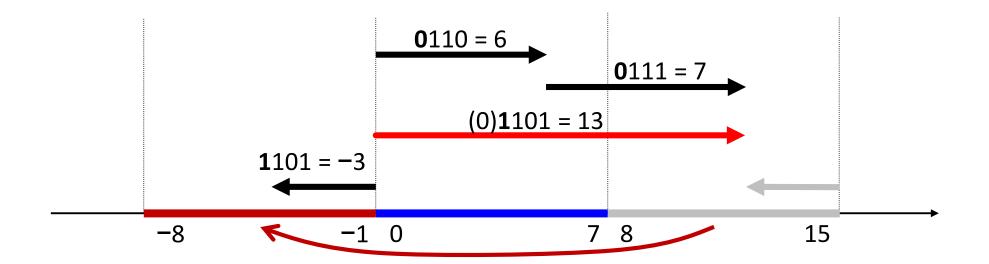
Overflows in Hardware

- In hardware, carry out is the only missing bit from the complete result
- We can think of overflows as a truncation problem:



Overflow in Software

- Some architectures (e.g., x86) give us the carry bit in a special "register" (a flag)
 - > overflow detection is the same as in hardware
- Other (modern) architectures give us only the result of the addition (e.g., RISC-V)
- Detection usually based on the following observations:
 - If addition of opposite sign numbers, magnitude can only reduce \rightarrow no overflow possible
 - If addition of same sign numbers, overflow possible but the sign of the result will appear wrong



Detect Addition Overflow in Software

- Add two 32-bit signed integers and detect overflow
 - At call time, a0 and a1 contain the two integers
 - On return, a0 contains the result and a1 must be nonzero in case of overflow

Detect Addition Overflow in Software

add_with_overflow:

```
t0, a0, a1 # Perform addition of a0 + a1, store result in t0
add
     t1, a0, a1
                     # t1<0 if the operands have different signs
xor
not
     t1, t1
                     # t1<0 if the operands have the same sign
xor t2, t0, a1
                     # t2<0 if the result has different sign from operand
and t1, t1, t2
                     # t1<0 if the same sign ops and different sign result
srli a1, t1, 31
                     # move "sign" to LSB of a1
     a0, t0
mv
                     # Return sum in a0, overflow flag in a1
ret
```

Detect Addition Overflow in Software (Better)

add_with_overflow: t0, a0, a1 # Perform addition of a0 + a1, store result in t0 add **slti** t1, a1, 0 # t1 = 1 if one operand is negative slt t2, t0, a0 # t2 = 1 if the result is smaller than the other operand a1, t1, t2 xor # overflow if and only if # - one op negative and result larger than other op # - one op zero/positive and result smaller than other op a0, t0 mv # Return sum in a0, overflow flag in a1

ret

$$A + \overline{A} = -1$$

A "strange" but very useful property

$$A + \bar{A} = -1 \qquad \text{or} \quad -A = \bar{A} + 1$$

Not too hard to prove

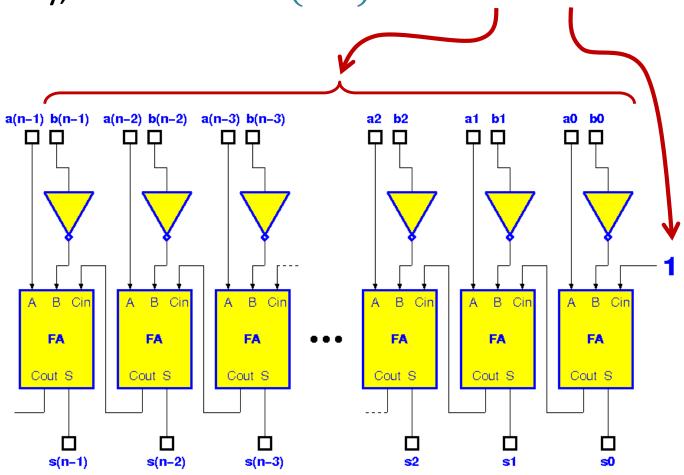
$$\left(-a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i\right) + \left(-\overline{a_{n-1}}2^{n-1} + \sum_{i=0}^{n-2} \overline{a_i}2^i\right) =$$

$$= -(a_{n-1} + \overline{a_{n-1}}) \cdot 2^{n-1} + \sum_{i=0}^{n-2} (a_i + \overline{a_i}) \cdot 2^i = -2^{n-1} + \sum_{i=0}^{n-2} 2^i = -1$$

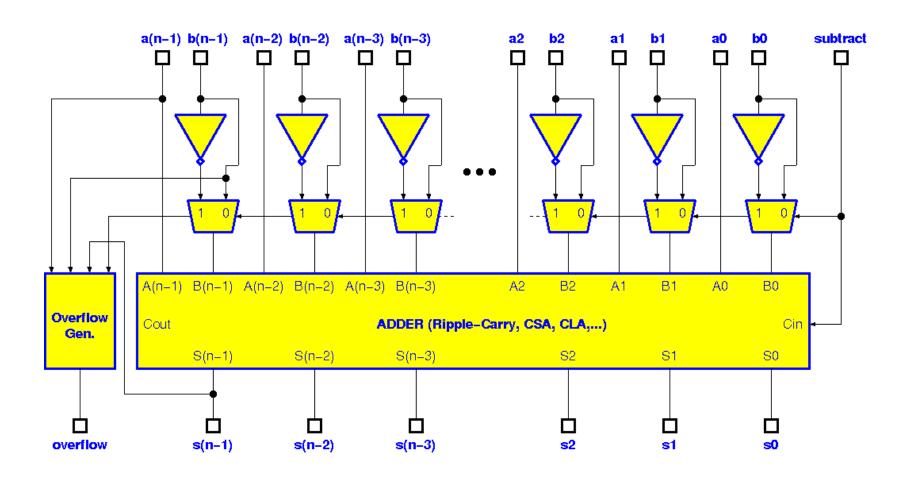
Also somehow intuitive

Two's Complement Subtractor

• Using this property, $A - B = A + (-B) = A + \overline{B} + 1$

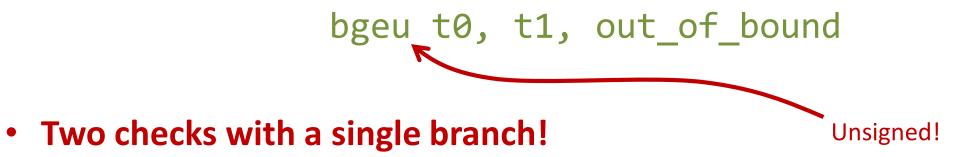


Two's Complement Add/Subtract Units

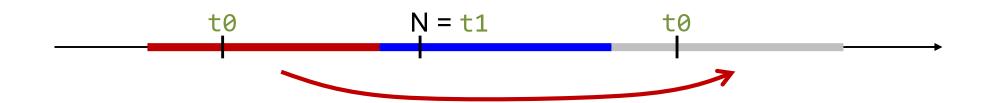


Fun Stuff: Bounds Check

 Check for a signed number t0 (e.g., an array index) to be within the bounds 0..N-1 where N is t1

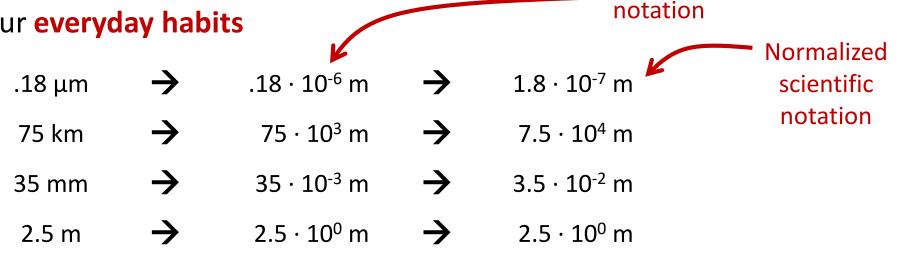


- If $t0 \ge 0$, bgeu is like bge and the right behaviour is evident
- If t0 < 0, as an unsigned t0 looks like larger than any signed positive



Floating Point

Corresponds to our everyday habits



Sign-and-Magnitude significand

Engineering

A significand (or mantissa) and an exponent of the base, for instance

 $X = \langle s a_{n-1} \dots a_2 a_1 a_0 e_{m-1} \dots e_1 e_0 \rangle = (-1)^s \cdot \sum_{i=0}^{n-1} a_i 2^i \cdot 2^{-e_{m-1} 2^{m-1} + \sum_{j=0}^{m-2} e_j 2^j}$

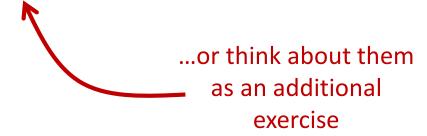
Floating Point

- Large dynamic range but variable accuracy
- Redundant unless normalized
- Not real numbers: not associative!
- Often exponent in biased signed representation
 - Zero can be represented by 0000...0000
 - Easier for comparisons and hardware implementations
- Often normalized mantissa $1 \le m < 2$ with hidden bit (1.xxxxx)
- Today the IEEE 754 standard is almost universally adopted
- x86/x64 supports FP through SSE/AVX extensions (since 1999)
- RISC-V supports FP through ISA extensions (not used in CS-200)

Example Sign-and-Magnitude Addition

- Write a function in RISC-V assembler to sum two 32-bit signed numbers represented in sign-and-magnitude (S&M) format and produce the result also in sign-andmagnitude format
- The two operands are in registers a0 and a1 on entry and the result should be placed in register a0

Ignore overflows



Example Solution: First Algorithm

- Do like humans do: look at the signs, perform an addition or subtraction as required, and decide the final sign
- Basic algorithm
 - If the operands have the same sign
 - Add the absolute values
 - Attach to the result the **same sign** as the operands
 - If the operands have different sign
 - Identify the largest value in absolute value
 - Subtract the smallest absolute value from the largest one
 - Attach to the result the sign of the largest value
- This method is left as an additional exercise

Example Solution: Second Algorithm

- Exploit what we have: implement conversions between the two representations
- Basic algorithm
 - Convert the two operands from sign-and-magnitude to 2's complement
 - Add the two operands
 - Convert the result from 2's complement to sign-and-magnitude

Example Solution: Converting S&M to 2's Comp

- Algorithm
 - If the value is positive, no conversion is needed
 - If the value is negative, one should
 - Find the S&M opposite (positive and therefore correctly represented also in 2's comp)
 - Find the 2's comp opposite (negative, as required)

Example Solution: Checking S&M Signs

- The S&M sign can be checked in many ways
 - Testing bit 31 by right shift

Testing bit 31 by masking

Comparing to zero (in principle this looks wrong, because bgez expects a 2's comp number, but...)

```
bgez t0, positive ◀
```

We should check that we are treating "minus 0" correctly

Example Solution: Finding the S&M Opposite

- Once we know that the S&M number is negative, the sign can be changed in a few of ways
 - Inverting bit 31 with a mask (a real sign change)

```
lui     t1, 0x80000
xor     a0, a0, t1
```

Clearing bit 31 with a mask (forcing a number to be positive)

```
lui     t1, 0x80000
not     t1, t1
and     a0, a0, t1
```

Removing bit 31 by two shifts (forcing a number to be positive)

```
      slli
      a0, a0, 1

      srli
      a0, a0, 1

      # srai would be wrong!
```

Example Solution: Finding the 2's Comp Opposite

- Once we have the absolute value, we can find the opposite in 2's comp in three ways
 - Subtracting from zero (which is ok, because a0 being positive, one can think of it as being in 2's comp)

```
neg a0, a0 # same as sub a0, zero, a0
```

- Using the relation $-A = \bar{A} + 1$

```
not a0, a0
addi a0, a0, 1
```

– Using the relation $-A = \overline{A-1}$

```
addi a0, a0, -1 not a0, a0
```

Example Solution: Converting 2's Comp to S&M

- Algorithm
 - If the value is positive, no conversion is needed
 - If the value is negative, one should:
 - Find the 2's comp opposite (which is positive and therefore correctly represented also in S&M)
 - Find the S&M opposite
- Most steps are similar to those before
 - Checking the sign of a 2's comp is the same as an S&M
 - Finding the 2's comp opposite is exactly as before

Example Solution: Finding the S&M Opposite

- If we know that a S&M number is positive, the sign can be changed in a few of ways
 - Inverting bit 31 with a mask (a real sign change)

```
lui     t1, 0x80000
xor     a0, a0, t1
```

Setting bit 31 with a mask (forcing a number to be positive)

```
lui      t1, 0x80000
or      a0, a0, t1
```

Example Solution: Complete Program

```
add sandm:
                                               # a mask for the sign bit
         lui
                  t1, 0x80000
                  t0, a0, t1
         and
         beqz
               t0, a0 positive
                  a0, a0, t1
         xor
                  a0, a0
         neg
a0 positive:
                                               # now a0 is in 2's complement
                  t0, a1, t1
         and
                t0, a1_positive
         beqz
                  a1, a1, t1
         xor
         neg
                  a1, a1
a1_positive:
                                               # now a1 too is in 2's complement
                  a0, a0, a1
                                               # perform the addition in 2's complement
         add
                  t0, a0, t1
         and
                  t0, sum_positive
         beqz
                  a1, a1
         neg
                  a0, a0, t1
         xor
sum positive:
                                               # now a0 is in sign-and-magnitude
         ret
```

References

- Patterson & Hennessy, COD RISC-V Edition
 - Chapter 2 and, in particular, Section 2.4
 - Chapter 3 and, in particular, Section 3.2