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Notation

• Number (represented on a specific no. of digits/bits)

• Number (in binary or decimal)

• Individual digits (bits)

• Digit string (representation)

𝐴𝐴 = 𝐴𝐴10 = 𝐴𝐴2 = 𝐴𝐴2𝑐𝑐

𝑎𝑎𝑛𝑛−1, 𝑎𝑎𝑛𝑛−2, … 𝑎𝑎2, 𝑎𝑎1, 𝑎𝑎0

𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛−2. . . 𝑎𝑎2𝑎𝑎1𝑎𝑎0

𝐴𝐴 = 𝐴𝐴(𝑛𝑛) = 𝐴𝐴(𝑚𝑚)

Simply 100010
if the digits are known

Binary

Binary, 2’s complement
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Numbers

We usually care for three types of numbers:

• Integers (signed and unsigned)
0, 1, 2, 3, 4294967295, −2147483648

• Fixed Point
0.12, 3.14, 1073741823.75

– Essentially integers with implicit 10k or 2k scaling
– Extremely important in practice (most signal-processing is fixed point)

• Floating Point
3.14E3, −2.5E1, 1.0E0, 4.2E−2, −1.5E−3
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Unsigned Integers

• Weighted (positional)
• Nonredundant
• Fixed-radix (radix-10 or radix-2)
• Canonical

• Definition:

𝐴𝐴 = 𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛−2. . . 𝑎𝑎2𝑎𝑎1𝑎𝑎0 = �
𝑖𝑖=0

𝑛𝑛−1

𝑎𝑎𝑖𝑖𝑅𝑅𝑖𝑖

If R = 2, binary
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Signed Integers

• Sign-and-Magnitude

• 2’s Complement (particular choice of True-and-Complement)

• Biased
– Practically used only in Floating Point numbers (mentioned later)



6

Sign and Magnitude

• Human friendly!
• The first symbol is a sign (+/− for humans, 0/1 for computers)
• The rest is an unsigned number:

+100, −2345 

+1112 = 01112
(4)

−1112 = 11112
(4)

• Definition:

𝐴𝐴 = 𝑠𝑠𝑎𝑎𝑛𝑛−2. . . 𝑎𝑎2𝑎𝑎1𝑎𝑎0 = (−1)𝑠𝑠 ⋅ �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖𝑅𝑅𝑖𝑖

If R = 2, binary

0 or 1

If we use 0/1 for the sign,
the number of bits matters



7

Radix’s Complement

• Special form of True-and-Complement with C = Rn

• Property when R = 2:

00000000 01111111 11111111

0 127 255

10000000

128

0111111110000000

127−128

11111111

−1

00000000

0

R = 2
n = 8

𝐴𝐴 = 𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛−2. . . 𝑎𝑎2𝑎𝑎1𝑎𝑎0 = −𝑎𝑎𝑛𝑛−12𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖2𝑖𝑖
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Radix’s Complement

• Not a human-friendly representation

• In decimal (10’s complement):

5,67810𝑐𝑐
(5) = 05,67810𝑐𝑐 = +5,67810

9,999,99910𝑐𝑐
(7) = 9,999,99910 − 107 = −110

8,76610𝑐𝑐
(4) = 8,76610 − 104 = −1,23410

• In binary (2’s complement):

0100,1101,00102𝑐𝑐
(12) = 100,1101,00102 = +1,23410

1111,11112𝑐𝑐
(8) = 25510 − 28 = −110

1011,0010,11102𝑐𝑐
(12) = 286210 − 212 = −123410
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2’s Complement from Subtraction

• Consider a “normal” paper-and-pencil subtraction

0 0 0 0 1 0 1 02 1010

− 0 0 0 1 0 0 0 12 1710



1
0A sign bit

Stop and 
“accept” 
the −1…

2’s Complement from Subtraction

• Consider a “normal” paper-and-pencil subtraction

−1 −1 −1 −1

0 0 0 0 1 0 1 02 1010

− 0 0 0 1 0 0 0 12 1710

… … 1 1 1 1 0 0 12

↓
–1 1 1 1 1 0 0 12

−27 +26 +25 +24 +23 +20 −710
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Addition Is Unchanged from Unsigned

• Only two instructions (with the immediate version; subi is a pseudo)

• Old architectures (MIPS, notably) had distinct add and addu but it was 
essentially a misnomer; ignore it and do not be confused!

• Instead, addition of Sign-and-Magnitude numbers is a different problem 
(see later)  this is why 2’s complement is the universal representation
of signed integers today
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Sign Extension

• Unsigned numbers can be though as having infinite 0s in front
−110 = −000110

1,01012 =  0000,0000,0001,01012
• Instead, 2’s complement numbers have infinite replicas of the MSB/sign 

bit in front
1 1 0 12 4 bits

-23 +22 +20 -310

1 1 1 1 1 1 0 12 8 bits

-27 +26 +25 +24 +23 +22 +20 -310

=

Truncation is 
legal only if you 

remove copies of 
the final sign bit
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Instructions for Signed Numbers

00002 < 11112
but

00002𝑐𝑐 > 11112𝑐𝑐

⁄11102 2 = 01112
but

⁄11102𝑐𝑐 2 = 11112𝑐𝑐

Insert zeroes (l = logic  unsigned) or sign bits (a = arithmetic  signed)
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Overflows in 2’s Complement Addition

• The sum is the same as with unsigned numbers:

…but how to assess overflows?

These bits are all 
identical to 

unsigned addition…
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Overflows in Hardware

• In hardware, carry out is the only missing bit from the complete result
• We can think of overflows as a truncation problem:

1

1
1

…

1
0 In 2’s complement, the carry bit must be equal to the next bit 

For unsigned numbers, the carry bit must be zeroNo

Ok
No
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Overflow in Software

• Some architectures (e.g., x86) give us the carry bit in a special “register” (a flag) 
 overflow detection is the same as in hardware

• Other (modern) architectures give us only the result of the addition (e.g., RISC-V)
• Detection usually based on the following observations:

– If addition of opposite sign numbers, magnitude can only reduce  no overflow possible
– If addition of same sign numbers, overflow possible but the sign of the result will appear wrong

0110 = 6
0111 = 7

(0)1101 = 13
1101 = −3

0 7 8 15−8 −1
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Detect Addition Overflow in Software

• Add two 32-bit signed integers and detect overflow
– At call time, a0 and a1 contain the two integers
– On return, a0 contains the result and a1 must be nonzero in case of 

overflow
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Detect Addition Overflow in Software
add_with_overflow:

add t0, a0, a1 # Perform addition of a0 + a1, store result in t0

xor t1, a0, a1 # t1<0 if the operands have different signs
not t1, t1           # t1<0 if the operands have the same sign
xor t2, t0, a1       # t2<0 if the result has different sign from operand
and t1, t1, t2       # t1<0 if the same sign ops and different sign result
srli a1, t1, 31       # move "sign" to LSB of a1

mv a0, t0
ret # Return sum in a0, overflow flag in a1
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Detect Addition Overflow in Software (Better)
add_with_overflow:

add t0, a0, a1       # Perform addition of a0 + a1, store result in t0

slti t1, a1, 0        # t1 = 1 if one operand is negative
slt t2, t0, a0       # t2 = 1 if the result is smaller than the other operand
xor a1, t1, t2       # overflow if and only if 

# - one op negative and result larger than other op
# - one op zero/positive and result smaller than other op

mv a0, t0
ret # Return sum in a0, overflow flag in a1
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A + A = −1

• A “strange” but very useful property

• Not too hard to prove

• Also somehow intuitive

−𝑎𝑎𝑛𝑛−12𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖2𝑖𝑖 + −𝑎𝑎𝑛𝑛−12𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖2𝑖𝑖 =

= − 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛−1 ⋅ 2𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

𝑎𝑎𝑖𝑖 + 𝑎𝑎𝑖𝑖 ⋅ 2𝑖𝑖 = −2𝑛𝑛−1 + �
𝑖𝑖=0

𝑛𝑛−2

2𝑖𝑖 = −1

0 1 0 0 1 1 0 0 +
1 0 1 1 0 0 1 1 =
1 1 1 1 1 1 1 1

𝐴𝐴 + 𝐴̅𝐴 = −1 or −𝐴𝐴 = 𝐴̅𝐴 + 1

A
𝐴̅𝐴

−1
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Two’s Complement Subtractor

• Using this property, 𝐴𝐴 − 𝐵𝐵 = 𝐴𝐴 + (−𝐵𝐵) = 𝐴𝐴 + 𝐵𝐵 + 1
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Two’s Complement Add/Subtract Units
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Fun Stuff: Bounds Check

• Check for a signed number t0 (e.g., an array index) to be within the 
bounds 0..N−1 where N is t1

bgeu t0, t1, out_of_bound

• Two checks with a single branch!
– If t0 ≥ 0, bgeu is like bge and the right behaviour is evident
– If t0 < 0, as an unsigned t0 looks like larger than any signed positive

Unsigned!

t0 t0N = t1
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Floating Point

• Corresponds to our everyday habits

• A significand (or mantissa) and an exponent of the base, for instance

.18 µm  .18 · 10-6 m  1.8 · 10-7 m

75 km  75 · 103 m  7.5 · 104 m

35 mm  35 · 10-3 m  3.5 · 10-2 m

2.5 m  2.5 · 100 m  2.5 · 100 m

Engineering
notation

Normalized
scientific
notation

𝑋𝑋 = 𝑠𝑠𝑎𝑎𝑛𝑛−1. . . 𝑎𝑎2𝑎𝑎1𝑎𝑎0𝑒𝑒𝑚𝑚−1. . . 𝑒𝑒1𝑒𝑒0 = (−1)𝑠𝑠 ⋅ �
𝑖𝑖=0

𝑛𝑛−1

𝑎𝑎𝑖𝑖2𝑖𝑖 ⋅ 2−𝑒𝑒𝑚𝑚−12𝑚𝑚−1+∑𝑗𝑗=0
𝑚𝑚−2 𝑒𝑒𝑗𝑗2𝑗𝑗

Sign-and-Magnitude significand

2’s complement exponent
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Floating Point

• Large dynamic range but variable accuracy
• Redundant unless normalized
• Not real numbers: not associative!
• Often exponent in biased signed representation

– Zero can be represented by 0000…0000
– Easier for comparisons and hardware implementations

• Often normalized mantissa 1 ≤ 𝑚𝑚 < 2 with hidden bit (1.xxxxx)
• Today the IEEE 754 standard is almost universally adopted
• x86/x64 supports FP through SSE/AVX extensions (since 1999)
• RISC-V supports FP through ISA extensions (not used in CS-200)



2
7

Example
Sign-and-Magnitude Addition

• Write a function in RISC-V assembler to sum two 32-bit signed numbers represented 
in sign-and-magnitude (S&M) format and produce the result also in sign-and-
magnitude format

• The two operands are in registers a0 and a1 on entry and the result should be placed 
in register a0

• Ignore overflows

…or think about them 
as an additional 

exercise
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Example
Solution: First Algorithm

• Do like humans do: look at the signs, perform an addition or subtraction as required, 
and decide the final sign

• Basic algorithm

– If the operands have the same sign
• Add the absolute values
• Attach to the result the same sign as the operands

– If the operands have different sign
• Identify the largest value in absolute value
• Subtract the smallest absolute value from the largest one
• Attach to the result the sign of the largest value

• This method is left as an additional exercise
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Example
Solution: Second Algorithm

• Exploit what we have: implement conversions between the two representations
• Basic algorithm

– Convert the two operands from sign-and-magnitude to 2’s complement
– Add the two operands
– Convert the result from 2’s complement to sign-and-magnitude
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Example
Solution: Converting S&M to 2’s Comp

• Algorithm
– If the value is positive, no conversion is needed
– If the value is negative, one should

• Find the S&M opposite (positive and therefore correctly represented also in 2’s comp)
• Find the 2’s comp opposite (negative, as required)
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Example
Solution: Checking S&M Signs

• The S&M sign can be checked in many ways

– Testing bit 31 by right shift

srli t0, a0, 31 # srai would be fine too
beqz t0, positive

– Testing bit 31 by masking

lui t1, 0x80000
and t0, a0, t1
beqz t0, positive

– Comparing to zero (in principle this looks wrong, because bgez expects a 2’s comp number, but…)

bgez t0, positive

We should check that we are 
treating “minus 0” correctly
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Example
Solution: Finding the S&M Opposite

• Once we know that the S&M number is negative, the sign can be changed in a few of ways

– Inverting bit 31 with a mask (a real sign change)

lui t1, 0x80000
xor a0, a0, t1

– Clearing bit 31 with a mask (forcing a number to be positive)

lui t1, 0x80000
not t1, t1
and a0, a0, t1

– Removing bit 31 by two shifts (forcing a number to be positive)

slli a0, a0, 1
srli a0, a0, 1 # srai would be wrong!
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Example
Solution: Finding the 2’s Comp Opposite

• Once we have the absolute value, we can find the opposite in 2’s comp in three ways

– Subtracting from zero (which is ok, because a0 being positive, one can think of it as being in 2’s comp)

neg a0, a0           # same as sub a0, zero, a0

– Using the relation  −𝐴𝐴 = 𝐴̅𝐴 + 1

not a0, a0
addi a0, a0, 1

– Using the relation −𝐴𝐴 = 𝐴𝐴 − 1

addi a0, a0, -1
not a0, a0
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Example
Solution: Converting 2’s Comp to S&M

• Algorithm
– If the value is positive, no conversion is needed
– If the value is negative, one should:

• Find the 2’s comp opposite (which is positive and therefore correctly represented also in S&M)
• Find the S&M opposite

• Most steps are similar to those before
– Checking the sign of a 2’s comp is the same as an S&M
– Finding the 2’s comp opposite is exactly as before
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Example
Solution: Finding the S&M Opposite

• If we know that a S&M number is positive, the sign can be changed in a few of ways

– Inverting bit 31 with a mask (a real sign change)

lui t1, 0x80000
xor a0, a0, t1

– Setting bit 31 with a mask (forcing a number to be positive)

lui t1, 0x80000
or a0, a0, t1
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Example
Solution: Complete Program

add_sandm:
lui t1, 0x80000 # a mask for the sign bit
and t0, a0, t1
beqz t0, a0_positive
xor a0, a0, t1
neg a0, a0

a0_positive: # now a0 is in 2’s complement
and t0, a1, t1
beqz t0, a1_positive
xor a1, a1, t1
neg a1, a1

a1_positive: # now a1 too is in 2’s complement
add a0, a0, a1 # perform the addition in 2’s complement
and t0, a0, t1
beqz t0, sum_positive
neg a1, a1
xor a0, a0, t1

sum_positive: # now a0 is in sign-and-magnitude
ret
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