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Notation

Number (represented on a specific no. of digits/bits)

A =40 = g(m)

Number (in binary or decimal)

A=A10=A2=A2f

C

N—

Individual digits (bits)

an_l, an_z, BEn az, al, aO

Digit string (representation) /

(Ap_1an_2...02a1a0)

Binary, 2’s complement

Binary

Simply 100010
if the digits are known




Numbers

We usually care for three types of numbers:

* Integers (signed and unsigned)

0,1,2,3,4294967295, —2147483648
 Fixed Point

0.12,3.14,1073741823.75

— Essentially integers with implicit 10 or 2% scaling

— Extremely important in practice (most signal-processing is fixed point)

* Floating Point
3.14E3, —2.5E1, 1.0E0, 4.2E—-2, —1.5E-3




Unsigned Integers

Weighted (positional)
Nonredundant

Fixed-radix (radix-10 or radix-2)
Canonical

Definition:

If R =2, binary
n—1 /

_ _ i
A=(a,_10,_5...0,0,10y) = 2 a;R
i=0




Signed Integers

* Sign-and-Magnitude
e 2’s Complement (particular choice of True-and-Complement)

* Biased
— Practically used only in Floating Point numbers (mentioned later)




Signh and Magnitude

Human friendly!
The first symbol is a sign (+/- for humans, 0/1 for computers)

The rest is an unsigned number:

+100, —2345 If we use 0/1 for the sign,
the number of bits matters

+111,=0111%” /
[—1112 = 111124)]
e If R =2, binary
Definition:
n—2

A= (san_y...a,a100) = (—1)° - 2 a;R'

_/ 1=0
Oor1l




Radix’s Complement

e Special form of True-and-Complement with C=R"

00000000 01111111 10000000 11111111
0 127 128 255

/ R=2

/ n=28
10000000 11111111 00000000 01111111
~128 -1 0 127 ]
* Property whenR =2:
n—2

— — n—1 L
A=(a,_1a,_»...0,0100) = —A,_12™" * + E a;?2
i=0




Radix’s Complement

* Not a human-friendly representation
* In decimal (10’s complement):
5,678\ = 05,678,0c = +5,678,,
9,999,999'7) =9,999,999, ) — 107 = —1,,
8,766\1. = 8,766,0 — 10* = —1,234,,
* In binary (2’s complement):
0100,1101,0010:* = 100,1101,0010, = +1,234,,
1111,11118% = 255,, — 28 = —1,,
1011,0010,11105% = 2862,, — 212 = —1234,,




2’s Complement from Subtraction

* Consider a “normal” paper-and-pencil subtraction




2’s Complement from Subtraction

* Consider a “normal” paper-and-pencil subtraction

-1 -1 -1 -1
0 0 00 1 0 1 o, 10,
-0 0 0 1 0 0 0 1, 1716
stop and e w111 1 0 0 1,
thoon. N 2
1|1 1 1 1 0 0 1,
27 |+26 425 424 423 +20 -710

R—
A sign bit




Addition Is Unchanged from Unsigned

* Only two instructions (with the immediate version; subi is a pseudo)

Arithmetic

add rd,rsl,rs2 rd + rsl + rs2 R 0x00 0x0 0x33
addi rd,rsl,imm rd <— rsl + sext(imm) I 0x0 0x13
sub rd,rsl,rs2 rd < rsl —rs2 R 0x20 0x0 0x33

e Old architectures (MIPS, notably) had distinct add and addu but it was
essentially a misnomer; ignore it and do not be confused!

* Instead, addition of Sign-and-Magnitude numbers is a different problem
(see later) = this is why 2’s complement is the universal representation
of signed integers today




Sign Extension

* Unsigned numbers can be though as having infinite Os in front
1,0101, = 0000,0000,0001,0101,

* |nstead, 2’s complement numbers have infinite replicas of the MSB/sign
bit in front

1 1 0 12 4 bits
Truncation is
+22 +20 -310 legal only if you
/ remove copies of
the final sign bit
1 1 1 1 1 1 0 1, 8 bits

L 3[-27 +26 42> +24 +23] +22 +20 -310




Shift R2

srl rd,rsl,rs2 rd < rsif>.|rs2 R 0x00 0x5 0x33
srli rd,rsil,imm rd < rsi|>.,|imm 1 0x00 0xb 0x13
sra rd,rsl,rs?2 rd < rslf > frs2 R 0x20 0xb 0x33
srai rd,rsil,imm rd <« rslﬁimm 1 0x20 0xb 0x13
Compare

slt rd,rsl,rs?2 rd < rsl <, rs2 R 0x00 0x2 0x33
slti rd,rsl,imm rd < rsl <, sext(imm) I 0x2 0x13
sltu rd,rsil,rs2 rd < rsl <, rs2 R 0x00 0x3 0x33
sltiu rd,rsl,imm rd < rsl <, sext(imm) I 0x3 0x13
Branch

blt  rsl,rs2,imm  pc ¢ pc + sext(imm < 1), if rs1 <, rs2 B 0x4 0x63
bge rsl,rs2,imm  pc < pc + sext(imm < 1), if rs1 >, rs2 B 0x5 0x63
bltu rsi,rs2,imm  pc ¢ pc + sext(imm < 1), if rs1 <, rs2 B 0x6 0x63
bgeu rsl,rs2,imm  pc < pc + sext(imm < 1), if rs1 >, rs2 B 0x7 0x63
Load

1b rd,imm(rs1) rd < sext(mem|rsl + sext(imm)][7 : 0]) I 0x0 0x03
lbu  rd,imm(rsi) rd < zext(mem|rs1 + sext(imm)][7 : 0]) I 0x4 0x03
1h rd,imm(rs1) rd < sext(mem[rsl + sext(imm)][15 : 0]) I 0x1 0x03
lhu  rd,imm(rsi) rd < zext(mem|rs1 + sext(imm)|[15 : 0]) I 0x5 0x03

\

Instructions for Sighed Numbers

Ve Insert zeroes (1 = logic = unsigned) or sign bits (a = arithmetic = signed)

1110,/2 = 0111,
but
1110,./2 = 1111,,

0000, < 1111,
but
0000,. > 1111,




Overflows in 2’s Complement Addition

e The sum is the same as with unsigned numbers:

a(n-1) b{n-1) a(n-2) b(n-2) a{n-3) b{n-3) a2 b2 al bl a0 bd
These bits are all LI_-I T LI_-I T LI_-I T LI_-I T LI_-I T LI_-I T B
identical to ‘ ‘ I ‘ ‘ ‘
; .. A B Cin A B Cin A B Cin A B Cin A B Cin A B Cin
unsigned addition...
FA FA FA ee e FA FA FA
Cout S Cout S Cout S Cout S Cout S Cout S
7y I I O I R R
O O O O O O
s{n-1) s{n-2) s{n-3) 52 51 s0

...but how to assess overflows?




Overflows in Hardware

* In hardware, carry out is the only missing bit from the complete result

* We can think of overflows as a truncation problem:

a(n-1) b{n-1) a(n-2) b(n-2) a{n-3) b{n-3)

[

[

[

a? b2 al bi a0 bD
T T b T T b T T
A B Cin A B Cin A B Cin
FA FA FA
Cout 5 Cout 5 Cout 5
52 s1 s0

-~ For unsigned numbers, the carry bit must be zero

A Bocnl|la 8onl|la & cin
FA FA FA
Cout 5 Cout 5 Cout 5
sn) i s(n-1) s(n-2) s(n-3)
No 1 €T
Ok 1
No 1

1
0 } <€— |n 2’s complement, the carry bit must be equal to the next bit




Overflow in Software

Ill

 Some architectures (e.g., x86) give us the carry bit in a special “register” (a flag)
- overflow detection is the same as in hardware
 Other (modern) architectures give us only the result of the addition (e.g., RISC-V)

* Detection usually based on the following observations:
— If addition of opposite sigh numbers, magnitude can only reduce = no overflow possible
— |If addition of same sign numbers, overflow possible but the sign of the result will appear wrong

0110=6
—
0111 =7
—
(0)1101 =13 :
1101 =-3

-8 —_ -1 0 78 _~— 15




Detect Addition Overflow in Software

* Add two 32-bit sighed integers and detect overflow
— At call time, a0 and al contain the two integers

— On return, a0 contains the result and a1l must be nonzero in case of
overflow







Detect Addition Overflow in Software

add_with_overflow:

add to, ao, al # Perform addition of a@ + al, store result in to
xor tl, a0, al # t1<0 if the operands have different signs

not ti1, til # t1<0 if the operands have the same sign

xor t2, tO, al # t2<0 if the result has different sign from operand
and t1, t1, t2 # t1<0 if the same signh ops and different sign result
srli al, ti1, 31 # move "sign" to LSB of al

mv ad, to
ret # Return sum in a@, overflow flag in al




Detect Addition Overflow in Software (Better)

add_with_overflow:
add to, ao, al # Perform addition of a@ + al, store result in to

slti t1, al, ©
slt t2, to, ao
xor al, t1, t2

tl = 1 if one operand is negative

t2 = 1 if the result is smaller than the other operand
overflow if and only if

- one op negative and result larger than other op

H HF H H H

- one op zero/positive and result smaller than other op

mv ad, to
ret # Return sum in a@, overflow flag in al




A+A=-1

* A “strange” but very useful property

[A+/T:—1] or —A=A+1

* Not too hard to prove

n-—2 n—2
—ap_ 12" + Z a;2' |+ | —ap_2™ 1 + Z a;2! | =

=0

n-2 n—2
= —(ap_1+ A1) 2"+ > (a;+a) -2t =-2"14+ ) 2t=—1
2, 2,
e Also somehow intuitive
A/*O 1 001 100 + 1
__»10110011-= ,
A 11111111 € _/




Two’s Complement Subtractor

* Using this property, A — B =A+ (—B) = A + B+1

A
'd \
ain-1) b{n-1) ain-2) b{n-2) a(n-3) b{n-3) a2 b2 al bi a0 b0
O O O O O O
A B Cin A B Cin A B Cin A B Cin A B Cin A B Cin
FA FA FA eee FA FA FA

Cout 5 Cout 5 Cout 5 Cout 5 Cout 5 Cout 5




Two’s Complement Add/Subtract Units

ain-1) b{n-1) a(n-2) b{n-2) a(n-3) b{n-3) b a0 b0 subtract

1 1 1 1 1

L

| N N ]
1 0 1 0 1 0 1 0
A(n-1] B(n-1] A(n-2) B(n-2) A(n-3] B[n-3) Az B2 Al Bl A0 BO
0“;'::"" Cout ADDER (Ripple—Carry, CSA, CLA,...) Gin
S(n-1) S(n-2) S(n-3) 52 51

L b

overilow s(n-1) s(n-2) s(n-3) s2 =1

&0— 2




Fun Stuff: Bounds Check

* Check for a signed number t0 (e.g., an array index) to be within the
bounds 0..N-1 where Nis t1

bgeu t0, tl1l, out of bound
\
——

* Two checks with a single branch! Unsigned!
— If t6 20, bgeu is like bge and the right behaviour is evident

— If t0 <0, as an unsigned t0 looks like larger than any signed positive

to N=tl tIG
—#

\ j




Floating Point

Engineering
* Corresponds to our everyday habits / notation
Normalized

.18 pm -> 18 -10%m 4 1.8-107 m scientific

notation
75 km -> 75-103 m -> 7.5-10*m
35 mm > 35-103m > 3.5-102m
2.5m > 2.5-10°m > 2.5-10°m

* Asignificand (or mantissa) and an exponent of the base, for instance

2’s complement exponent

n—1 P AL
§ =g 2Ty 2 o 0]
X = (San_l...azalaoem_l...eleo> — (_1)5 . aiZL -2 em-1 Z]—0 €j
=0
“ J
Y

Sign-and-Magnitude significand



Floating Point

Large dynamic range but variable accuracy
Redundant unless normalized
Not real numbers: not associative!

Often exponent in biased signed representation
— Zero can be represented by 0000...0000
— Easier for comparisons and hardware implementations

Often normalized mantissa 1 < m < 2 with hidden bit (1. xxXxxXx)
Today the IEEE 754 standard is almost universally adopted
x86/x64 supports FP through SSE/AVX extensions (since 1999)
RISC-V supports FP through ISA extensions (not used in CS-200)




Example
Sign-and-Magnitude Addition

Write a function in RISC-V assembler to sum two 32-bit sighed numbers represented

in sign-and-magnitude (S&M) format and produce the result also in sign-and-
magnitude format

The two operands are in registers a@ and al on entry and the result should be placed
in register a@

lgnore overflows

L..or think about them
as an additional

exercise







Example
Solution: First Algorithm

* Do like humans do: look at the signs, perform an addition or subtraction as required,
and decide the final sign

e Basic algorithm

/— If the operands have the same sign \
* Add the absolute values
e Attach to the result the same sign as the operands

— If the operands have different sign
 Identify the largest value in absolute value

e Subtract the smallest absolute value from the largest one
\ » Attach to the result the sign of the largest value /

 This method is left as an additional exercise




Example
Solution: Second Algorithm

* Exploit what we have: implement conversions between the two representations
e Basic algorithm

(- )

— Convert the two operands from sign-and-magnitude to 2’s complement
— Add the two operands
— Convert the result from 2’s complement to sign-and-magnitude

G J




Example
Solution: Converting S&M to 2’s Comp

* Algorithm
— If the value is positive, no conversion is needed

— If the value is negative, one should
* Find the S&M opposite (positive and therefore correctly represented also in 2’s comp)
* Find the 2’s comp opposite (negative, as required)




Example
Solution: Checking S&M Signs

* The S&M sign can be checked in many ways

— Testing bit 31 by right shift

srli to, a0, 31 # srai would be fine too
beqz to0, positive

— Testing bit 31 by masking

lui tl, Ox80000
and to, a0, t1
beqz t0, positive

— Comparing to zero (in principle this logkq wrong, because bgez expects a 2’s comp number, but...)

bgez to, positive

We should check that we are
treating “minus 0” correctly




Example
Solution: Finding the S&M Opposite

* Once we know that the S&M number is negative, the sign can be changed in a few of ways

— Inverting bit 31 with a mask (a real sign change)

lui tl, Ox80000
xor ad, ao, tl

— Clearing bit 31 with a mask (forcing a number to be positive)

lui t1l, Ox80000
not t1l, t1
and ao, ao, ti1

— Removing bit 31 by two shifts (forcing a number to be positive)

slli ad, a0, 1
srli aod, ao, 1 # srai would be wrong!




Example
Solution: Finding the 2’s Comp Opposite

* Once we have the absolute value, we can find the opposite in 2’s comp in three ways

— Subtracting from zero (which is ok, because 20 being positive, one can think of it as being in 2’s comp)
neg ao, ao # same as sub a@, zero, ao
— Using the relation — A=A+ 1

not ad, a0
addi ad, ao, 1

— Using the relation —A =4 -1

addi a0, ao, -1
not ad, a0




Example
Solution: Converting 2’s Comp to S&M

* Algorithm
— If the value is positive, no conversion is needed
— If the value is negative, one should:

* Find the 2’s comp opposite (which is positive and therefore correctly represented also in S&M)
* Find the S&M opposite

* Most steps are similar to those before
— Checking the sign of a 2’s comp is the same as an S&M
— Finding the 2’s comp opposite is exactly as before




Example
Solution: Finding the S&M Opposite

* |f we know that a S&M number is positive, the sign can be changed in a few of ways

— Inverting bit 31 with a mask (a real sign change)

lui tl, Ox80000
xor ad, ao, tl

— Setting bit 31 with a mask (forcing a number to be positive)

lui tl, Ox80000
or ad, ao, tl




Example
Solution: Complete Program

add_sandm:
lui tl, Ox80000 # a mask for the sign bit
and to, a0, til
beqz to, a@_positive
xor ao, ao, ti
neg ad, ao
a0_positive: # now a@ is in 2’s complement
and to, al, t1
beqz t0, al_positive
xor al, al, ti
neg al, al
al_positive: # now al too is in 2’s complement
add a0, ao, al # perform the addition in 2’s complement
and to, a0, til
beqz t0, sum_positive
neg al, al
xor ao, a0, ti
sum_positive: # now a@ is in sign-and-magnitude

ret




References

e Patterson & Hennessy, COD — RISC-V Edition

— Chapter 2 and, in particular, Section 2.4
— Chapter 3 and, in particular, Section 3.2
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